
J. Fluid Mech. (2001), vol. 426, pp. 347–354. Printed in the United Kingdom

c© 2001 Cambridge University Press

347

Oscillatory double-diffusive instabilities in
a vertical slot

By O L I V E R S. K E R R
Department of Mathematics, City University, Northampton Square, London EC1V 0HB, UK

(Received 26 May 2000)

Recent linear stability analyses of double-diffusive convection in a laterally heated
vertical slot containing water have shown that for very weak (or no) vertical salinity
gradient the initial instabilities are steady, but as the salinity gradient is increased
there is a transition to oscillatory instabilities. For higher Prandtl number fluids the
initial instabilities in a slot with no stratification can be oscillatory or wave-like.
We show that the oscillatory instabilities in water are linked to these higher Prandtl
number oscillatory instabilities. The salinity gradient has a destabilizing effect on
these oscillations, making them appear for Prandtl numbers where oscillatory insta-
bilities are not possible in the absence of salinity gradients. We derive an asymptotic
description for this mode of instability.

1. Introduction
‘Double-diffusive convection’ refers to convection in a fluid where there are two

diffusing components which have an effect on the density. The archetypal case is heat
and salt. Convection that is dominated by the presence of two components is very
common in geophysical systems, for example in the oceans and in magma chambers.
A broad view of the subject of double-diffusive convection is given by Brandt &
Fernando (1996).

One classic problem in double-diffusive convection is the lateral heating of a salt-
stratified fluid in a vertical slot. This was first studied by Thorpe, Hutt & Soulsby
(1969) who, in addition to conducting experiments, derived a theoretical criterion
for the onset of instabilities for strong salinity gradients. This analysis was extended
by Hart (1971) who also carried out a numerical investigation into the stability for
a range of salt stratifications. A further numerical investigation was conducted by
Thangam, Zebib & Chen (1981). Errors in their results for a relatively small range of
gradients were found by Young & Rosner (1998) and Kerr & Tang (1999, hereafter
referred to as KT). This range included a portion where the predicted instabilities
were oscillatory. For further details the reader is referred to these papers.

The region on the stability boundary for double-diffusive convection in a vertical
slot where the initial instability is oscillatory is indicated by the dashed line in figure 1
(from KT). (For the definitions of the heat and salt Rayleigh numbers, RaT and RaS ,
used in this figure, and of the Prandtl number and salt/heat diffusivity ratio see § 2.)
This oscillatory instability occurs when the salinity stratification is relatively weak, but
not too weak. These calculations were performed using a Prandtl number appropriate
for water, σ = 6.7, and a salt/heat diffusivity ratio of τ = 0.01. Asymptotic analysis
was used to describe the boundary in four regions shown in figure 1, numbered 1 to 4.
The asymptotics of region 4 are those found by Thorpe et al. (1969), while the others
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Figure 1. Marginal stability curve for a salinity gradient in a vertical slot with σ = 6.7 and τ = 0.01.
The onset of instability is steady everywhere except for the short dashed curve. The numbers indicate
the sections of the curve where different asymptotic regimes hold (from Kerr & Tang 1999).

were found by KT. KT failed to find an asymptotic description for the oscillatory
section of the boundary, labelled O. The origin of these oscillatory solutions was not
clear.

In essence, this paper sets out to complete the work of KT by examining in more
detail the oscillatory portion of the boundary. In § 2 we set out the problem. In § 3
we will describe the oscillatory branch of solutions and show how it is linked to the
oscillatory or wave instabilities found in high Prandtl number fluids. The asymptotics
of this section of the stability boundary are given in § 4.

2. Statement of problem
The non-dimensional linear equations for the perturbation streamfunction, ψ, tem-

perature, T , and salinity, S , from Thangam et al. (1981) are(
d2

dx2
− α2

)2

ψ − iα

σ

(
W̄ (x)

(
d2

dx2
− α2

)
ψ − ψW̄ ′′(x)

)
+RaTT

′ − RaSS ′ − λ

σ

(
d2

dx2
− α2

)
ψ = 0, (2.1a)

(
d2

dx2
− α2

)
T + iαψT̄x(x)− iαW̄ (x)T − λT = 0, (2.1b)

τ

(
d2

dx2
− α2

)
S + iαψS̄x(x)− iαW̄ (x)S + ψ′ − λS = 0, (2.1c)
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where λ is the growth rate of the instabilities and α the vertical wavenumber. The
boundary conditions for the fluid at the vertical walls are no slip for the flow, zero
temperature perturbation and no salt flux, giving

ψ = ψ′ = T = S ′ = 0 on x = ±1/2. (2.2)

The above equations have been made non-dimensional using the scalings D for
length, D2/κT for time, ∆T for temperature and D|S̄z| for salinity, where D is the width
of the slot, κT the thermal diffusivity, ∆T the temperature difference between the
walls and S̄z the constant vertical salinity gradient. The non-dimensional parameters
here are the temperature and salt Rayleigh numbers

RaT =
gα∆TD3

νκT
, RaS =

g(−βS̄z)D4

νκT
, (2.3)

and the Prandtl number and salt/heat diffusivity ratio

σ =
ν

κT
, τ =

κS

κT
. (2.4)

Here g is the acceleration due to gravity, ν the kinematic viscosity, κS the salt
diffusivity, α the coefficient of thermal expansion and β the coefficient of density
increase with respect to the addition of salt.

The steady non-dimensional background state is given by

W̄ (x) =
RaT

2M3(sinM + sinhM)
(sinhM1 sinM2 − sinM1 sinhM2) , (2.5a)

T̄ (x) = −x, (2.5b)

S̄x(x) = − RaT

4τM4

(
1 +

1

sinM + sinhM
(coshM1 sinM2 − coshM2 sinM1

− sinhM1 cosM2 + sinhM2 cosM1)

)
, (2.5c)

where

M =

(
RaS

4τ

)1/4

, M1 =

(
Mx+

M

2

)
, M2 =

(
Mx− M

2

)
. (2.6)

Here W̄ (x), T̄ (x) and S̄x(x) are the non-dimensional vertical velocity, temperature
and horizontal salinity gradient, which satisfy the boundary conditions

W̄ (±1/2) = 0, T̄ (±1/2) = ∓1/2, S̄x(±1/2) = 0. (2.7)

The temperature gradient gives rise to the vertical velocity. This in turn induces a
horizontal salinity gradient which will moderate the vertical velocity.

3. The oscillatory instabilities
The instabilities in the classic problem of a laterally heated vertical slot with no

stratification and no salinity gradient (RaS = 0) can take the form of either steady
or oscillatory convection. Korpela, Gözüm & Baxi (1973) found that for σ > 12.7
instabilities set in as travelling waves, but for lower values of the Prandtl number
the initial instabilities were steady. The graph of the thermal Rayleigh number for
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Figure 2. The value of RaT for the onset of instability in a laterally heated vertical slot with
no vertical temperature or salinity gradient as a function of the Prandtl number, σ. Where the
instability is steady the line is solid, and where it is oscillatory or wave-like it is dashed.

marginal stability is shown in figure 2. It is more common to use the Grashof number
(Gr = gα∆TD3/ν2) which is a more appropriate non-dimensional parameter for steady
convection in this problem. We use the Rayleigh number here for compatibility with
other studies of double-diffusive convection in a vertical slot. The cross-over point
between the two different modes of instability is found to be at σ = 12.454, slightly
lower than the value reported by Korpela et al.† For Prandtl numbers less than this
value the critical Rayleigh numbers lie on an almost straight line with slope 1 on this
logarithmic plot, indicating that the Rayleigh number is approximately proportional
to the Prandtl number (or equivalently, the Grashof number is almost constant).
The critical Rayleigh number on the overstable section shows an initial steep decline
reaching a minimum near σ = 24.412 before increasing towards a line of constant
slope. A feature of this curve that will have some bearing on the following discussion
is that the oscillatory branch of solutions tends to infinity as the Prandtl number
decreases towards 11.562. For a Prandtl number less than this value there are no
linear oscillatory instabilities.

We now look at how variations of the Prandtl number affect stability of a fluid
in a laterally heated slot with a vertical salinity gradient. We fix the value of the
salt/heat diffusivity ratio, τ, to be 0.01, a value appropriate for salt in water. The
stability curves for the laterally heated slot with a vertical salinity gradient for four
different Prandtl numbers are shown in figure 3: (a) 3.7099, (b) 6.7, (c) 12.454 and
(d ) 15.0. In each case the results are displayed for Rayleigh numbers in the ranges
0 6 RaS 6 6 and 1000 6 RaT 6 16000. In each graph there are three curves: a

† Bergholz (1978) also calculated the critical Rayleigh/Grashof numbers for instabilities in a
vertical slot for σ = 12.7. His figure 3 clearly shows the critical Grashof numbers for the two modes
differing by nearly 1000. Our calculations indicate the critical Grashof numbers for the stationary
and oscillatory modes are 7873 and 6947 respectively for σ = 12.7.
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Figure 3. Marginal stability curves for the cases (a) σ = 3.7099, (b) σ = 6.7, (c) σ = 12.454 and
(d) σ = 15.0. The dashed lines indicate where the initial instability is oscillatory and the solid lines
where it is steady.

dashed curve indicating the boundary for the onset of oscillatory or travelling wave
instabilities, a nearly vertical line indicating a steady instability (the large-RaT regime
of KT), and a sloping solid line indicating another branch of steady instabilities (the
small-RaS regime of KT). In all cases the fluid is stable in the bottom left corner.
For the above Prandtl numbers the sloping steady branch of solutions has a positive
slope, indicating the salinity gradient is stabilizing. The curve’s point of intersection
with the vertical axis steadily increases as the Prandtl number increases as is expected
from the purely thermal problem. The other branch of steady solutions, the large-RaT
branch, remains almost vertical over the range of temperature Rayleigh numbers. Its
position is a weak function of the Prandtl number, showing little variation here.

The oscillatory branch of solutions only intersects the vertical axis in figures 3(c)
and 3(d). Both show that the effect of a small salinity gradient is to further destabilize
the fluid between the walls to oscillatory instabilities. As the Prandtl number increases
from 12.454 to 15 the value of the intersection of this curve with the RaT -axis decreases
as predicted by the purely thermal problem. As the Prandtl number decreases towards
11.562 the point of intersection with the vertical axis moves off to infinity, but the
curve for larger values of the salt Rayleigh number moves up by a relatively small
amount. As the Prandtl number decreases beyond this point the location of the
vertical asymptote of the oscillatory branch moves to the right. Meanwhile the rest
of the curve continues to move upwards.
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It is clear that there are three possible regimes for the onset of instability. For low
values of the Prandtl number the oscillatory mode of instabilities is not important,
with only the two steady branches giving the stability boundary for the system. For
σ = 3.7099 the oscillatory branch passes through the intersection of the two steady
branches and so at this point there are three different modes of marginal stability
with non-zero wavenumber. For values of the Prandtl number between this value
and σ = 12.454 there is the second regime, which includes the case of water. In this
regime the stability boundary has an initial steady section, followed by the oscillatory
branch and then a second transition to the large-RaT regime of KT. The last regime
is for Prandtl numbers greater than 12.454. The initial instabilities for low RaS are
always oscillatory with only the one transition to the nearly vertical branch of steady
instabilities.

4. Asymptotics
In order to obtain an asymptotic description of the oscillatory branch of solutions

that describes the curved region in figures 1 and 3(b) we assume the Prandtl number
is less than 11.562 and follow the oscillatory branch of solutions upwards, looking at
the limit of large RaT . This leads to an expansion equivalent to the large-RaT regime
of KT, but now we must include the non-zero frequency of the instabilities. As in KT
we pose a large-RaT expansion

ψ(x) = ψ0(x) + Ra−1
T ψ1(x) + Ra−2

T ψ2(x) + · · · , (4.1a)

T (x) = Ra−1
T T0(x) + Ra−2

T T1(x) + Ra−3
T T2(x) + · · · , (4.1b)

S(x) = S0(x) + Ra−1
T S1(x) + Ra−2

T S2(x) + · · · , (4.1c)

RaS = RaS 0 + Ra−1
T RaS 1 + Ra−2

T RaS 2 + · · · , (4.1d)

λ = i
(
ω0 + Ra−1

T ω1 + Ra−2
T ω2 + · · ·) . (4.1e)

We again note that W̄ (x) and S̄x(x) are both proportional to RaT at leading order.
However when expanding to higher orders we must allow for the RaT dependence
via the variation of RaS . Thus we will expand them as

W̄ (x) = RaTW̄0(x) + W̄1(x) + Ra−1
T W̄2(x) + · · · , (4.2a)

S̄x(x) = RaT S̄x0(x) + S̄x1(x) + Ra−1
T S̄x2(x) + · · · . (4.2b)

Rescaling the vertical wavenumber, α = Ra−1
T α0, gives the following leading-order set

of equations:

ψ′′′′0 − iα0

σ
(W̄0(x)ψ′′0 − ψ0W̄

′′
0 (x)) + T ′0 − RaS 0S

′
0 − iω0ψ

′′
0

σ
= 0, (4.3a)

T ′′0 − iα0ψ0 − iα0W̄0(x)T0 − iω0T0 = 0, (4.3b)

τS ′′0 + iα0ψ0S̄x0(x)− iα0W̄0(x)S0 + ψ′0 − iω0S0 = 0, (4.3c)

with boundary conditions

ψ0 = ψ′0 = T0 = S ′0 = 0 on x = ±1/2. (4.4)

These equations were solved using a modified version of the Galerkin program used
to find the oscillatory solutions in KT. The minimum value of the leading-order salt
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Figure 4. A comparison of the marginal stability curve of KT for the full problem (dashed curve)
and the asymptotic approximation for the oscillatory instabilities for σ = 6.7 and τ = 0.01. The
leading-order asymptotic approximation is indicated by the vertical dotted line and the large-RaT
steady branch by the near vertical solid line.

Rayleigh number and the corresponding wavenumber and frequency is found to be

RaS 0 = 1.8548, α0 = 48780, ω0 = 257.75. (4.5)

This result gives a vertical boundary for the oscillatory solutions. However, this is
not observed in the (RaT , RaS )-plane, where the boundary is always curved. To get a
better description of this boundary we have to look to higher orders in our expansion.

If we look at the O(Ra−1
T ) equations and apply a solvability condition we find

that RaS 1 = ω1 = 0. We omit the details and continue directly with the O(Ra−2
T )

equations:

ψ′′′′2 − iα0

σ
(W̄0(x)ψ′′2 − ψ2W̄

′′
0 (x)) + T ′2 − RaS 0S

′
2 − iω0ψ

′′
2

σ
= 2α2

0ψ
′′
0 − iα3

0

σ
W̄0(x)ψ0

+
iα0

σ
(W̄2(x)ψ′′0 − ψ0W̄

′′
2 (x)) + iω0α

2
0ψ0 + iω2ψ

′′
0 + RaS 2S

′
0, (4.6a)

T ′′2 − iα0ψ2 − iα0W̄0(x)T2 − iω0T2 = α2
0T0 + iα0W̄2(x)T0 + iω2T0, (4.6b)

τS ′′2 + iα0ψ2S̄x0(x)− iα0W̄0(x)S2 + ψ′2 − iω0S2 = τα2
0S0 − iα0ψ0S̄x2(x) + iω2S0. (4.6c)

Applying a solvability condition to these yields a complex linear equation with two
real unknowns, RaS 2 and ω2. For σ = 6.7 and τ = 0.01 this has the solution

RaS 2 = 1.283× 109, ω2 = −4.6905× 1010. (4.7)

The asymptotic result for the salt Rayleigh number is compared with the oscillatory
branch of instability for the full problem in figure 4. Also plotted in this figure is the
asymptotic prediction for the steady large-RaT branch from KT (the second-order
correction RaS 2 = 47842 has no visible effect on the curve with the range and scale of



354 O. S. Kerr

this figure). It can be seen that the asymptotics match the solution to the full problem
very well for large values of RaT , and that the agreement between the two is quite
close all the way to where the two curves cross the steady large-RaT branch. Thus the
asymptotics to this order provide a reasonable description of the curved part of the
boundary for all cases where it represents the primary mode of marginal instability.

5. Conclusions
In conclusion, the oscillatory branch of instabilities observed by Young & Rosner

and by KT has its origins in the oscillatory instabilities in a vertical unstratified
laterally heated vertical slot. The presence of a vertical salinity gradient tends to
destabilize this mode of instability. The salinity gradient’s effect is sufficiently strong
that it can sometimes bring this mode of instability back into existence for lower
values of the Prandtl number when the mode no longer exists in an unstratified slot.
This is the case for Prandtl numbers appropriate for water as used by Young &
Rosner and KT.

The asymptotics for the oscillatory branch now completes the set of asymptotics
of the five different primary modes of instability, giving a good description of nearly
all the linear stability boundary for the problem of heating a salt-stratified fluid in
a vertical slot. This oscillatory regime is derived using the same set of equations
as the large-RaT regime of KT. The steady instabilities extended across the whole
slot, and were driven by the lateral salinity gradients induced by the temperature
difference. The presence of the shear was stabilizing. The oscillatory instabilities are
similar, except that they are mainly located in either the upward or downward flowing
regions of the fluid, which gives rise to their wave-like behaviour.

The author would like to thank Kit Yee Tang for permission to use and adapt her
computer program in the course of this work.
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